學(xué)術(shù)活動(dòng)
歡迎關(guān)注華北電力大學(xué)!
歡迎關(guān)注華北電力大學(xué)!
【講座題目】Applications of the weak observability inequality
【時(shí) 間】2023年6月8日 下午:15:00-16:00
【地 點(diǎn)】保定校區(qū) 自動(dòng)化系 線上騰訊會(huì)議:411-355-079
【主 講 人】汪更生,教授、天津大學(xué)
【主講人簡(jiǎn)介】
汪更生,天津大學(xué)應(yīng)用數(shù)學(xué)中心教授,一直從事微分系統(tǒng)控制理論的研究?,F(xiàn)任 SIAM Journal on Control and Optimization; ESAIM Control, Optimization and Calculus of Variation; Mathematical Control and Related Fields 等國際刊物的編委。在偏微分方程的能控能觀性、能穩(wěn)性和時(shí)間最優(yōu)控制方向做出了重要貢獻(xiàn),其中包括熱方程的插值不等式、薛定諤方程的時(shí)間兩點(diǎn)型能觀性不等式、時(shí)間最優(yōu)控制的 bang-bang 性和周期發(fā)展系統(tǒng)的反饋能穩(wěn)性等。在 Springer 與Birkhauser 出版兩本學(xué)術(shù)專著,發(fā)表論文90 余篇。
【報(bào)告內(nèi)容簡(jiǎn)介】
We briefly introduce the weak observability inequality. We then show several applications of this inequality: First, we obtain the equivalence between the solvability of the LQ problem and the stabilizability when the control operator is unbounded but admissible. This improves the usual definition of the stabilizability (for unbounded cases). Second, we design a kind of feedback laws via Gramian operator method. Third, we clarify the relationship between several types of feedbcak stabiliztions.